[2 +3] Cycloaddition reactions of dimethylamino-bis (trifluoromethyl) borane, $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$, with nitrile oxides, nitrones and $\mathrm{Me}_{2} \mathrm{C}=\mathrm{SO}_{2}$. Crystal and molecular structure of $\left(\mathrm{CF}_{3}\right)_{2} \widehat{\mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{BuC}=\mathrm{N}-\mathrm{O}}$ and $\left(\mathrm{CF}_{3}\right)_{2} \widehat{\mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{CMe}_{2}-\mathrm{S}(=\mathrm{O})-\mathrm{O}}{ }^{1}$

David J. Brauer, Hans Bürger * Gottfried Pawelke, Jürgen Rothe

Anorganische Chemie, Fachbereich 9, Universitür-GH, 42097 Wuppertal, Germany
Received 12 December 1995

Abstract

Dimethylamino-bis(trifluoromethyl)borane. $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}(\mathrm{~A})$, undergoes $[2+3]$ cycloaddition reactions with various 1,3 dipolar species to yield five-membered heterocycles. While nitrile oxides RCNO give ($\left.\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{RC}=\mathrm{N}-\mathrm{O} ; \mathrm{R}=\mathrm{Mes}$ (II), Ph (II), $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{R}^{1} \mathrm{HC}-\mathrm{NR}^{2}-\mathrm{O} ; \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}(\mathrm{VI}),{ }^{\mathrm{P}} \mathrm{ClC}_{6} \mathrm{H}_{4}$ (VII), $\mathrm{C}_{6} \mathrm{~F}_{5}$ (VIII), ${ }^{\mathrm{C}} \mathrm{Bu}$ (IX), ${ }^{1} \operatorname{Pr}$ (X); $\mathrm{R}^{2}=\mathrm{R}^{1}=\mathrm{Ph}$ (XI). Analogously, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{SO}_{2}$ yields the five-membered ring $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{CMe}_{2}-\mathrm{S}(=\mathrm{O})-\mathrm{O}$ (XII). The constitution of the novel boron compounds has been deduced from multinuclear NMR, IR and mass spectra. The structures of IV and XII have been investigated by single-crystal X-ray diffraction.

Keynords: Boron: Dimethylamino-bis(trifluormethyl)borane; Cycloaddition reactions

1. Introduction

Dimethylamino-bis(trifluoromethyl)borane, $\left(\mathrm{CF}_{3}\right)_{2}=$ BNMe_{2} (A), possesses chemical properties that are unique in aminoborane chemistry [1]. Owing to a balance of pronounced electrophilic character and steric protection of the boron atom, the reactivity of its strong $\mathrm{B}=\mathrm{N}$ bond bears a degree of resemblance to an olefinic $\mathrm{C}=\mathrm{C}$ bond. In preceding contributions from our laboratory we have reported on numerous [$2+4]$ and $[2+2]$ cycloaddition reactions of \mathbf{A}. Thus A combines with 1,3 unsaturated compounds of the general formula $\mathrm{X}=\mathrm{CR}^{3}-\mathrm{CR}^{2}=\mathrm{CHR}^{1}\left(\mathrm{X}=\mathrm{CH}_{2}, \mathrm{O}\right)$ to form novel six-membered heterocycles $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{CHR}^{1-}$ $\mathrm{CR}^{2}=\mathrm{CR}^{1}-\mathrm{X}$ in high yields [2]. Isocyanates and isothiocyanates $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{X}(\mathrm{X}=\mathrm{O}, \mathrm{S})$ react with A to yield two types of four-membered ring, $\left(\mathrm{CF}_{3}\right), \mathrm{B}=$ $\mathrm{NMe}_{2}-\mathrm{C}(=\mathrm{X})-\mathrm{NR}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{X}-\mathrm{C}\left(=\mathrm{NMe}_{2}\right)-\mathrm{NR}$, depending on the nature of R [3].

[^0]However, no examples of $[2+3]$ cycloaddition reactions of A had been discovered previously. Such reactions of aminoboranes and the 1,3 dipolar imine oxide (nitrone) $\mathrm{PhHC}=\mathrm{N}(\mathrm{Me})-\mathrm{O}$ have alleady been studied [4], but only $\mathrm{Cl}_{2} \mathrm{BNMe}$, gave a stable heterocyclopentane derivative, $\mathrm{Cl}_{2} \mathrm{Bm} \mathrm{NMe}_{2}-\mathrm{PhHC}-\mathrm{NMe}-\mathrm{O}$. The cor responding cycloadduct obtained at low temperature from $\mathrm{Me}_{2} \mathrm{BNMe}_{2}$ and $\mathrm{PhHC}=\mathrm{N}(\mathrm{Me})-\mathrm{O}$ was found by NMR spectroscopy to be in equilibrium with the reactants according to

Since the Lewis acidity of boron in \mathbf{A} in comparison with that in $\mathrm{Me}_{2} \mathrm{BNMe}_{2}$ might carry reaction (1) to stable $[2+3]$ cycloadducts, we have investigated reactions of \mathbf{A} with imine oxides.

To our knowledge no [$2+3$] cycloaddition reactions of dialkyl or dihalo aminoboranes with nitrile oxides

R-CNO have yet been reported. Nitrile oxides are commonly accepted as reactive 1,3 dipolar reactants [5], and the high reactivity of the $\mathrm{B}=\mathrm{N}$ double bond in A prompted us to investigate its reactions with such nitrile oxides and to study the effect of fluorine substitution on the synthesis and stability of $[2+3]$ cycloadducts with nitrones.

While investigating [$2+2$] cycloaddition reactions of A with various heterocumulenes (N -sulfinyl-sulfonamides, amino-iminophosphanes, etc.), we discovered that some sulfenes reveal a behavior in agreement with a 1,3 dipolar character. The results of the reaction with sulfenes will also be reported.

2. Results

The aminoborane \mathbf{A} reacts with the nitrile oxides RCNO according to Eq. (2) to give the corresponding novel five-membered heterocycles $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{NMe}_{2}-$ $\overline{\mathrm{RC}}=\mathrm{N}-\mathrm{O}$ (I-V) in yields ranging from 29 (III) to 78% (I). Except for $\mathbf{R}=$ Mes, all the above-mentioned nitrile oxides readily dimerize; therefore they were prepared at $-30^{\circ} \mathrm{C}$ in situ by abstraction of HCl from the corresponding hydroximic acid chlorides $\mathrm{RCIC}=\mathrm{NOH}$ using triechylamine. The modest yields of the heterocyclopentenes II-V are probably due to competitive sidereactions involving auto-dimerization of the nitrile oxides.

R=Mes (I), Ph (II), ${ }^{\mathrm{P}} \mathrm{ClC}_{6} \mathrm{H}_{4}$ (III), ${ }^{1} \mathrm{Bu}$ (IV), ${ }^{1} \mathrm{Pr}$ (V) In contrast to the nitrile oxides, the imine oxides $R^{\prime} \mathrm{HC}=\mathrm{N}^{\left(R^{2}\right)}=\mathrm{O}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Ph},{ }^{\mathrm{P}} \mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{~F}_{5}$, ${ }^{\prime} \mathrm{Bu} .{ }^{\prime} \mathrm{Pr}, \mathbf{R}^{2}=\mathbf{R}^{\prime}=\mathrm{Ph}$ are stable at room temperature. They react readily with A at $-10^{\circ} \mathrm{C}$ in pentane solution to yield the heterocyclopentanes (VI-XI)

 ${ }^{\prime} \mathrm{Bu}$ (IX), ${ }^{\prime} \operatorname{Pr}(\mathbf{X})$;
$R^{2}=R^{1}=P h(X I)$
These were obtained in much better yields ($70-80 \%$).
Somewhat unexpectedly, the dimethyl methylene sulfone $\mathrm{Me}_{2} \mathrm{C}=\mathrm{SO}_{2}$ also behaved as a 1,3 dipolar reactant
and readily gave a $[2+3]$ cycloaddition product (XII) according to Eq. (4). This was isolated in a 63% yield.

However, the related methylene sulfones $\mathrm{PhHC}=\mathrm{SO}_{2}$, $\mathrm{MeHC}=\mathrm{SO}_{2}$ and $\mathrm{H}_{2} \mathrm{C}=\mathrm{SO}_{2}$ did not react cleanly with A, but rather produced black tarry material which could not be characterized.

3. Properties and spectra

The novel boron heterocycles I-XII are colorless solids, the melting points of which are reported in the Experimental section. Compounds I-V and XII are stable to air and moisture and soluble in polar organic solvents, while species VI-XI are sensitive to hydrolysis and therefore have to be handled in a dry atmosphere. They are also thermally less stable than I-V, decomposition occurring between 70 and $105^{\circ} \mathrm{C}$. In particular IX and X, which contain bulky electron donating ' Bu and ${ }^{1} \mathrm{Pr}$ groups, apparently have a labile $\mathrm{C}-\mathrm{NMe}_{2}$ bond. Indeed, the mass spectrum of IX mainly contains fragment ions of decomposition products.

The ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{I}-\mathrm{XII}$ were recorded. The chemical shifts, which are set out in Table 1, are consistent with the proposed structures, and only a few comments will be necessary. The ${ }^{13} \mathrm{C}$ resonances of the CE_{3} groups are not detectable due to quadrupole broadening by the boron atom. Compounds VI-XII have an asymmetric ring atom which should cause a splitting of the NMR signals both of the $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ and $B\left(\mathrm{CF}_{3}\right)_{2}$ groups. While only VI-VIII and XII show this expected splitting, the resonances of IX and \mathbf{X} are just broadened. The $\mathrm{C}_{6} \mathrm{~F}_{5}$ group of compound VIII reveals five ${ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ resonances in spectra recorded at $25^{\circ} \mathrm{C}$. This indicates hindered rotation of the pentafluorophenyl group. However, attempts to determine the barrier to rotation by high temperature ${ }^{19} \mathrm{~F}$ NMR spectroscopy failed due to the thermal instability of VIII.

The constitution of compound XII as a five-membered ring follows from the NMR spectra. The fact that $\mathrm{Me}_{2} \mathrm{C}=\mathrm{SO}_{2}$ reacts as a 1,3 dipolar species was unexpected because it is well known that sulfenes undergo $[2+2]$ cycloaddition reactions, e.g. with enamines [6]. However, the two possible four-membered heterocycles $\left(\mathrm{CF}_{3}\right)_{2} \stackrel{\mathrm{B-NMe}}{2}-\mathrm{CMe}_{2}-\mathrm{SO}_{2}$ and $\left(\mathrm{CF}_{3}\right)_{2} \overline{\mathrm{~B}-\mathrm{NMe}_{2^{-}}}$ $\mathrm{SO}_{2}-\mathrm{CMe}_{2}$, as well as the five-membered isomer
$\left(\mathrm{CF}_{3}\right)_{2} \overline{\mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{O}-\mathrm{S}(=\mathrm{O})-\mathrm{CMe}}{ }_{2}$, can be excluded by the following arguments. The ${ }^{13} \mathrm{C}$ signal at 89.4 ppm assigned to $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ is sharp; therefore this carbon atom cannot be bonded to boron, thus ruling out the latter two structures. The splitting of the NCH_{3} and
CCH_{3} signals, both in the ${ }^{1} \mathrm{H}$ and the ${ }^{13} \mathrm{C}$ spectra, and the two fluorine resonances at -65.5 and -66.4 ppm exclude a symmetrically substituted planar four-membered ring. Moreover, one of the $\mathrm{CCH}_{5}{ }^{13} \mathrm{C}$ signals at 20 ppm appears as a quartet with a ${ }^{5} J(\mathrm{CF})$ coupling

Table 1
NMR spectral data for I-XII (δ in ppm) ${ }^{\text {a }}$

${ }^{3}$ I-III, $\mathrm{V}-\mathrm{VII}$ and IX-XII in CDCl_{3}, IV in $\mathrm{CD}_{3} \mathrm{CN}$, VIII in $\mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{1} \mathrm{H}: 250.13 \mathrm{MHz}$, internal standard $\mathrm{CHCl}_{3} 7.27 \mathrm{ppm}, \mathrm{CHDCl}_{2} 5.35 \mathrm{ppm}$, $\mathrm{CD}_{2} \mathrm{HCN} 1.95 \mathrm{ppm} .{ }^{13} \mathrm{C}: 62.9 \mathrm{MHz}$, internal standard $\mathrm{CDCl}_{3} 77.0 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2} 53.8 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN} 1.30 \mathrm{ppm} .{ }^{19} \mathrm{~F}: 84.67 \mathrm{MHz}$, internal standard CFCl_{3}. ${ }^{11} \mathrm{~B}: 25.52 \mathrm{MHz}$, extemal standard $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Fig. 1. Fragmentation of compounds I-V.
constant of 5 Hz . This large long range coupling is further proof of the proposed constitution of XII, $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{CMe}_{2}-\mathrm{S}(=\mathrm{O})-\mathrm{O}$. This constitution is also supported by the mass spectral data (vide infra).

El mass spectral data for I-XII are listed in Table 2. The peaks of the molecular ions M^{+}are generally weak if at all detectable, but the ions $\left[\mathrm{M}-\mathrm{CF}_{3}\right]^{+}$and $[\mathrm{M}-$ $\left.\mathrm{C}_{2} \mathrm{~F}_{3}\right]^{+}$are indicative of the molecular mass. The fragmentation patterms of the heterocyclopentenes 1-V on the one hand and the pentanes VI-XI on the other hand are significantly different. While the cycloadducts I-V fracture at the $\mathrm{C}-\mathrm{NMe}_{2}$ and $\mathrm{N}-\mathrm{O}$ bonds (Fig. 1) to form the characteristic fragments assigned as $\left[\mathrm{FOBN}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}$and $[\mathrm{RCN}]^{+}$, the fragmentation of VI-XI is more complicated. Here the characteristic ions are $\left[\mathrm{R}^{1}-\mathrm{CH}=\mathrm{NOMe}^{+},\left[\mathrm{R}^{1}-\mathrm{CNOMe}\right]^{+}\right.$, $\left[\mathrm{R}^{1} \mathrm{CNMe}\right]^{+}$ and the ion $m / e 92$, which is assigned to $\left[\mathrm{F}_{2} \mathrm{BN}\left(=\mathrm{CH}_{2}\right) \mathrm{CH}_{3}\right]^{+}$.

The base peak of compound XII is $m / e 86$, which is assigned to the fragment $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}$. A further characteristic ion in the mass spectrum of XII is $m / e 90$, which can be ascribed to $\left[\mathrm{FOBN}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}$. The appearance of these two frugments, and the absence

Fig. 2. A perspective drawing of IV with 20% probability thermal ellipsoids except for the hydrogen atoms.
of infrared bands which can be assigned to an SO_{2} group, strongly support the proposed constitution $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{NMe}_{2}-\mathrm{CMe}_{2}-\mathrm{S}(=\mathrm{O})-\mathrm{O}$ of XII.

The infrared spectra of compounds I-V show the characteristic ($\mathrm{C}=\mathrm{N}$) stretching vibrations between 1600 and $1660 \mathrm{~cm}^{-1}$, while XII has a strong absorption at $1002 \mathrm{~cm}^{-1}$ which might be attributed to an ($\mathrm{S}=0$) stretching mode.

4. Description of the crystal structures of IV and XII

The X-ray studies confirm the proposed structures. Thus IV contains a five-membered ring (Fig. 2) which exhibits $\mathrm{C}(1)-\mathrm{N}(2)(1.264(3) \AA)$ and $\mathrm{N}(2)-\mathrm{O}(1.411(2)$

Table z
Selected electron impact mass spectral data in order of decreasing intensity (m / c (relative intenaity (C)) [fragment|') for $1=$ XII


```
    304(8)[M=CF
```



```
    /77(39) (C. (H5)}\mp@subsup{)}{}{*}/212(4)[M-\mp@subsup{C}{2}{}\mp@subsup{\textrm{F}}{4}{}\mp@subsup{)}{}{*}/312(1)[M]
III 90(100)[FOBN(CH}\mp@subsup{)}{2}{}\mp@subsup{]}{}{*}/44(94)[N(\mp@subsup{\textrm{CH}}{3}{}\mp@subsup{)}{3}{}\mp@subsup{]}{}{*}/227(55)[M-\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{F}}{3}{}\mp@subsup{]}{}{*}/138(43)[\mp@subsup{\textrm{CIC}}{6}{}\mp@subsup{\textrm{H}}{3}{
```



```
v 4*(100)(N(CH)
    /200(7)(M-CF,]:
```



```
    /77(42)[\mp@subsup{C}{6}{}\mp@subsup{\textrm{H}}{3}{}\mp@subsup{]}{}{+}/259(29)[M-\mp@subsup{\textrm{CF}}{3}{}\mp@subsup{]}{}{+}/209(24)(M-\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{F}}{3}{}\mp@subsup{]}{}{*}/328(6)[M\mp@subsup{)}{}{+}
```



```
VIII 42(100)[(CH2) N N]
```



```
    77(28)[FRN(CH
    174(7)[M-C, F2 -CH3)
```



```
XI 91(100) (NC, H
        /321(4)[M-CF3]*/390(3)[M]+
```


Table 3
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in IV

B-C(8)	$1.624(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.532(3)$
$\mathrm{B}-\mathrm{C}(9)$	$1.628(4)$	$\mathrm{C}(2)-\mathrm{C}(4)$	$1.535(3)$
$\mathrm{B}-\mathrm{N}(1)$	$1.612(3)$	$\mathrm{C}(2)-\mathrm{C}(5)$	$1.531(4)$
$\mathrm{B}-\mathrm{O}$	$1.443(3)$	$\mathrm{C}(8)-\mathrm{F}(1)$	$1.336(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.503(2)$	$\mathrm{C}(8)-\mathrm{F}(2)$	$\because 341(3)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.514(3)$	$\mathrm{C}(8)-\mathrm{F}(3)$	$1.350(3)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.497(2)$	$\mathrm{C}(9)-\mathrm{F}(4)$	$1.347(3)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.264(3)$	$\mathrm{C}(9)-\mathrm{F}(5)$	$1.350(3)$
$\mathrm{N}(2)-\mathrm{O}$	$1.411(2)$	$\mathrm{C}(9)-\mathrm{F}(6)$	$1.355(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.518(3)$		
$\mathrm{C}(8)-\mathrm{B}-\mathrm{C}(9)$	$109.3(2)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	$106.5(2)$
$\mathrm{C}(8)-\mathrm{B}-\mathrm{N}(1)$	$114.8(2)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$117.3(2)$
$\mathrm{C}(8)-\mathrm{B}-\mathrm{O}$	$110.9(2)$	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)$	$107.7(2)$
$\mathrm{C}(9)-\mathrm{B}-\mathrm{N}(1)$	$111.2(2)$	$\mathrm{O}-\mathrm{N}(2)-\mathrm{C}(1)$	$111.5(2)$
$\mathrm{C}(9)-\mathrm{B}-\mathrm{O}$	$110.3(2)$	$\mathrm{B}-\mathrm{O}-\mathrm{N}(2)$	$107.1(2)$
$\mathrm{N}(1)-\mathrm{B}-\mathrm{O}$	$100.0(2)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{P}(9)$	$111.8(2)$
$\mathrm{B}-\mathrm{N}(1)-\mathrm{C}(1)$	$97.9(1)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$126.9(2)$
$\mathrm{B}-\mathrm{N}(1)-\mathrm{C}(6)$	$111.4(2)$	$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.3(2)$
$\mathrm{B}-\mathrm{N}(1)-\mathrm{C}(7)$	$115.7(2)$		

\AA) bond lengths typical of an oxime fragment incapable of π-conjugation to its neighbours - average values in such cases are reported as $1.281(13)$ and $1.416(6) \AA$ respectively [7]. Furthermore, in agreement with a double bond between the $\mathrm{C}(1)$ and $\mathrm{N}(2)$ atoms, the $\mathrm{O}, \mathrm{N}(1)$, $\mathrm{N}(2), \mathrm{C}(1), \mathrm{C}(2)$ fragment is planar to within ± 0.029 \AA. The boron atom lies $0.556(3) \AA$ from this plane, the ring being folded along the $N(1) \cdots O$ tie-line by $33.2(4)^{\circ}$. Adoption of the envelope conformation opens the $\mathrm{O}-\mathrm{B}-\mathrm{N}(1)-\mathrm{C}(1)$ and $\mathrm{N}(1)-\mathrm{B}-\mathrm{O}-\mathrm{N}(2)$ torsion angles to $31.2(4)$ and $-31.6(4)^{\circ}$ respectively. The former torsion combines with deviations in the bond angles of the B and $N(1)$ atoms from the tetrahedral value (Table 3) to reduce steric crowding involving their exocyclic substituents. However, puckering shortens the contacts between the methyl carbon $\mathrm{C}(7)$ and the ' Bu group. Here steric repulsion is relieved by opening the $\mathrm{C}(1)$ -$N(1)-C(7)$ and $N(1)-C(1)-C(2)$ angles to $117.3(2)$ and $126.9(2)^{\circ}$, gearing $C(7)$ berween the $C(3)$ and $C(5)$

Fig. 3. A perspective drawing of XII with 20% probability thermal ellipsoids except for the hydrogen atoms.

Table 4
Selected bond distances (\AA) and angles (${ }^{\circ}$) in XII

$\mathrm{B}-\mathrm{C}(2)$	$1.646(5)$	$\mathrm{S}-\mathrm{C}(1)$	$1.849(3)$
$\mathrm{B}-\mathrm{C}(3)$	$1.627(4)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.514(5)$
$\mathrm{B}-\mathrm{N}$	$1.643(4)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$1.527(5)$
$\mathrm{B}-\mathrm{O}(1)$	$1.470(3)$	$\mathrm{C}(2)-\mathrm{F}(1)$	$1.357(4)$
$\mathrm{N}-\mathrm{C}(1)$	$1.543(3)$	$\mathrm{C}(2)-\mathrm{F}(2)$	$1.337(4)$
$\mathrm{N}-\mathrm{C}(4)$	$1.516(3)$	$\mathrm{C}(2)-\mathrm{F}(3)$	$1.343(4)$
$\mathrm{N}-\mathrm{C}(5)$	$1.509(3)$	$\mathrm{C}(3)-\mathrm{F}(4)$	$1.341(5)$
$\mathrm{S}-\mathrm{O}(1)$	$1.590(2)$	$\mathrm{C}(3)-\mathrm{F}(5)$	$1.347(4)$
$\mathrm{S}-\mathrm{O}(2)$	$1.452(2)$	$\mathrm{C}(3)-\mathrm{F}(6)$	$1.357(5)$
$\mathrm{C}(2)-\mathrm{B}-\mathrm{C}(3)$	$106.4(3)$	$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(5)$	$104.0(2)$
$\mathrm{C}(2)-\mathrm{B}-\mathrm{N}$	$114.3(2)$	$\mathrm{B}-\mathrm{O}(1)-\mathrm{S}$	$118.1(2)$
$\mathrm{C}(2)-\mathrm{B}-\mathrm{O}(1)$	$108.4(2)$	$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	$110.1(1)$
$\mathrm{C}(3)-\mathrm{B}-\mathrm{N}$	$115.0(2)$	$\mathrm{O}(1)-\mathrm{S}-\mathrm{C}(1)$	$92.4(1)$
$\mathrm{C}(3)-\mathrm{B}-\mathrm{O}(1)$	$107.7(2)$	$\mathrm{OC} 2)-\mathrm{S}-\mathrm{C}(1)$	$107.0(1)$
$\mathrm{N}-\mathrm{B}-\mathrm{O}(1)$	$104.8(2)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{S}$	$103.7(2)$
$\mathrm{B}-\mathrm{N}-\mathrm{C}(1)$	$106.7(2)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(6)$	$114.2(3)$
$\mathrm{B}-\mathrm{N}-\mathrm{C}(4)$	$111.6(2)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(7)$	$112.0(3)$
$\mathrm{B}-\mathrm{N}-\mathrm{C}(5)$	$113.8(2)$	$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(6)$	$109.6(2)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(4)$	$109.4(2)$	$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(7)$	$105.3(2)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	$111.2(2)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	$111.4(3)$

atoms and tilting the C_{3} axis of the ' Bu group away from the $\mathrm{C}(1)-\mathrm{C}(2)$ bond. The $\mathrm{B}-\mathrm{N}(1)(1.612(3) \AA)$ and B-O (1.443(3) \AA) bond distances in IV do not differ significantly from the corresponding distances in the six-membered ring $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{NEt}_{2}-\mathrm{CH}_{2}-\mathrm{CH}-$ $\overline{\mathrm{CMe}-\mathrm{O}}$ (1.64(1) and 1.45(1) \AA respectively [2]). That these values are significantly shorter than the analogous bond lengths in the five-membered ring $\mathrm{Ph}_{2} \overparen{\mathrm{~B}-\mathrm{NMM}_{2}{ }^{-}}$ $\mathrm{CH}_{2}=\mathrm{CH}_{2}-\mathrm{O}$ (1.686(2) and $1.470(2) \AA$ respectively [8]) can be attuibuted in part to the inductive effect of the CF_{3} groups.

The heterocycle of XII (Fig. 3) possesses a twist conformation with the boron atom on the pseudo-twofold axis. Although the endocyclic bond angles of the B, N and $\mathrm{O}(1)$ atoms in XII are 4.8(4), 8.8(2) and $11.0(3)^{\circ}$ larger than the corresponding angles in IV, the $\mathrm{B}=\mathrm{N}$, $\mathrm{C}(1)-\mathrm{N}$ and $\mathrm{B}-\mathrm{O}(1)$ distances in XII (Table 4) exceed their counterparts in IV by $0.031(5), 0.040(4)$ and $0.027(4) \AA$ respectively. This bond lengthening might be attributed in part to steric repulsions between the exocyclic substituents. It should be noted in this connection that both the $\mathrm{N}-\mathrm{B}-\mathrm{C}$ and the $\mathrm{N}-\mathrm{C}(1)-\mathrm{C}$ bond angles have been opened at the expense of the $O(1)-\mathrm{B}-$ C and $\mathrm{S}-\mathrm{C}(1)-\mathrm{C}$ angles, which are on average 6° smaller.

5. Discussion

The observed $[2+3]$ cycloaddition reactions of \mathbf{A} with nitrile oxides are, to our knowledge, the first involving aminoboranes to be reported. We point out, however, that some iminoboranes $\mathrm{Ar}-\mathrm{B} \equiv \mathrm{N}-\mathrm{Ar}$ have been shown to react analogously with nitrile oxides to

Table 5
Crystal data and refinement details for IV and XII

	IV	XII
Formula	$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{O}$	$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{BF}_{6} \mathrm{NO}_{2} \mathrm{~S}$
M_{r}	292.0	299.0
Space group	P2 $\mathbf{1}^{1} \mathrm{C}$	P2 $1_{1} / n$
$a(\mathcal{A})$	8.614(2)	7.8320(6)
b (${ }_{\text {A }}$)	13.074(3)	11.314(1)
$c(A)$	12.265(3)	14.068(1)
$\beta\left({ }^{\circ}\right)$	103.36(2)	98.165(7)
2	4	4
$D_{c}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.443	1.610
${ }^{(1)}{ }^{(8)}$	23	22
$\lambda(\mathbb{A})$	0.71073	1.54184
20 -limits (${ }^{\circ}$)	4-50	2-138.2
Measured reflections	5204	2745
Unique reflections	2367	2301
Observed ($F_{0} \geq 4 \sigma\left(F_{0}\right)$)	1752	1946
Monitor correction	1.00-0.89	0.987-1.064
Crystal size (mm^{3})	$0.38 \times 0.44 \times 0.49$	$0.25 \times 0.32 \times 0.46$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.11	3.05
Transmission	0.944-0.971	0.377-0.539
$R^{\text {a }}$	0.047	0.051
$\boldsymbol{w}{ }^{\text {b }}$	0.049	0.1143
$\Delta \rho\left(\chi^{*}{ }^{-3}\right)$	0.22	0.38
Parameters	192	172

$R=\sum| | F_{0}\left|=\left|F_{c}\right|\right| / \Sigma\left|F_{0}\right|$ for observed reflections only.
${ }^{6}$ For $\left[V W R=\left[\Sigma \omega\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w F_{0}^{2}\right]^{1 / 2}\right.$ with the sum over the observed reflections, and for X1I wR $=\left[\sum_{w}\left(F_{o}^{2}-\right.\right.$ $\left.\left.F_{6}^{2}\right)^{2} / \Sigma w_{6}^{2}\right]^{1 / b}$ with the sum over all reflections.
form five-membered heterocycles [9]. The thermal as well as hydrolytic stabilities of I-V are surprisingly high. Although the cycloadducts VI=XI obained from the nitrones are less stable than the latter, their stability still significantly exceeds that of the two examples mentioned [4]. Presumably the induetive effect of the two CF_{3} group, bonded to boron is responsible for this favorable stabilization.

The reaction of $\mathrm{Me}_{2} \mathrm{C} m \mathrm{SO}_{2}$ with A is indeed unique, not only because the reactions of the unsubstituted and monosubstituted sulfenes $\mathrm{H}_{2} \mathrm{C}=\mathrm{SO}_{2}, \mathrm{MeHC}=\mathrm{SO}_{2}$ and $\mathrm{PhHC=} \mathrm{SO}_{2}$ do not lead to tractable products, but also because formation of the five-membered ring in XII suggests a 1,3 dipolar addition of $\mathrm{Me}_{2} \mathrm{C}=\mathrm{SO}_{2}$ to A . To our knowledge, such a reactivity is unprecedented for methylene sulfones, which are known to undergo [2+2] cycloaddition reactions with enamines - the mode of addition indicating $\delta-\mathrm{C}=\mathrm{S} \delta+$ polarity [6]:

That analogous formation of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{B-} \mathrm{NMe}_{2}-\mathrm{SO}_{2}-$ CMe_{3} is not observed might be due to steric crowding of the substituents of such a four-membered ring. The
oxygen of the SO_{2} group, being sterically less demanding, can coordinate to the Lewis acidic boron atom of A. Thereby an inverse polarity $\delta+\mathrm{C}=\mathrm{S}(=0)-\mathrm{O} \delta-$ is created that makes $\mathrm{Me}_{2} \mathrm{C}=\mathrm{SO}_{2}$ suited to enter as 1,3 dipolar species into a $[2+3]$ cycloaddition reaction. The sterically less crowded sulfenes $\mathrm{RHC}=\mathrm{SO}_{2}$, with $\mathrm{R}=\mathrm{Ph}, \mathrm{Me}, \mathrm{H}$, might well add to A in the common way, with a $\delta-\mathrm{C}=\mathrm{S} \boldsymbol{\delta}+$ polarization of the $\mathrm{C}=\mathrm{S}$ bond to form the cyclic sulfonamides $\left(\mathrm{CF}_{3}\right)_{2}-\mathrm{B}-\mathrm{NMe}_{2}-\mathrm{SO}_{2}-$ $\overline{\mathrm{C}} \mathrm{HR}$ in a $[2+2]$ cycloaddition reaction. Although a ${ }^{13} \mathrm{C}$ NMR spectrum of the reaction mixture obtained from A and $\mathrm{MeHC}=\mathrm{SO}_{2}$ shows a broad signal at 50 ppm which can be ascribed to a carbon atom bonded to boron in a $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~B}-\mathrm{CHMe}-\mathrm{SO}_{2}$ fragment, the species giving rise to this resonance could not be identified. Therefore speculation on products and reaction mechanisms seems not to be warranted at present.

6. Experimental

6.1. X-ray structural determination

Crystals of IV and XII grew from their respective chloroform solutions and were mounted in glass capillaries. X-ray measurements on IV were made with a Siemens-AED-1 diffractometer using Zr filtered $\mathrm{Mo} \mathrm{K} \alpha$ radiation, while data on XII were gathered with a Siemens P3 diffractometer equipped with a Cu tube and a graphite monochromator. Intensities were collected using 20 $=\omega$ sean techniques, Crystal data are listed in Table 5. The structure of IV was solved using the program SHELXS-86 [10] and refined on F with SHELX. 76

Table 6
Positional and equivalent isoropic displacement parameters (\AA^{2}) a for the non-hydrogen atoms of IV

Atom	\boldsymbol{x}	y	:	$U_{\text {eq }}$
F(I)	1.2017(2)	0.3065(1)	$0.2647(1)$	0.1072 (8)
F(2)	1.1601(2)	0.4319(1)	0.1529(2)	$0.1078(8)$
$F(3)$	1.1621(2)	$0.4538(2)$	0.3266(2)	0.1268(9)
F(4)	$0.6693(2)$	0.4741 (1)	$0.1865(2)$	0.0998(8)
F(5)	0.8760(2)	$0.5558(1)$	$0.1654(2)$	$0.1076(8)$
$F(6)$	0.8554(2)	$0.5099(1)$	0.3299(1)	$0.1106(8)$
0	0.8837(2)	0.2974(1)	$0.2945(1)$	0.0670(6)
N(1)	0.8456(2)	$0.3106(1)$	$0.0996(1)$	0.0447(6)
N(2)	0.7399(2)	0.2485(1)	0.2419(1)	$0.0631(7)$
C(1)	$0.7120(2)$	0.2571 (1)	$0.1365(2)$	0.0462(7)
C(2)	0.5605(3)	$0.2144(2)$	$0.0617(2)$	0.0603(9)
C(3)	$0.5936(3)$	$0.1436(2)$	-0.0299(2)	0.076(1)
C(4)	0.4765(4)	$0.1507(2)$	0.1362(3)	0.095(1)
C(5)	0.4484 (3)	$0.3011(2)$	0.0092(3)	$0.091(1)$
C(6)	0.9567(3)	$0.2278(2)$	0.0765(2)	0.0651(9)
C(7)	$0.8017(3)$	0.3766(2)	-0.0027(2)	0.0655(9)
C(8)	1.1114(3)	0.3900(2)	$0.2391(2)$	$0.076(1)$
C(9)	0.8292(3)	0.4776(2)	0.2223(2)	0.075(1)
B	0.9205(3)	0.3697(2)	0.2152(2)	0.0542(9)

Table 7
Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)^{a}$ for the non-hydrogen atoms of XII

Atom	x	y	z	$U_{\text {eq }}$
S	$0.01622(11)$	0.20694(6)	0.32094(5)	0.0628(3)
F(1)	-0.0388(3)	0.2807(2)	-0.01656(14)	0.0996(8)
F(2)	-0.1314(3)	0.1500(2)	$0.07295(14)$	$0.0850(6)$
F(3)	$0.1206(3)$	0.1332(2)	0.0348(2)	0.1064(8)
F(4)	0.3708(3)	0.4053(2)	$0.1997(2)$	0.1167(10)
F(5)	0.3908(3)	0.2478(2)	0.1208(2)	0.1289(11)
F6)	0.2689 (3)	0.4015(2)	0.0517(2)	0.1257(10)
O(1)	$0.1339(2)$	$0.2021(2)$	0.23777(14)	0.0560(5)
O(2)	-0.1476(3)	0.1488(2)	0.2900(2)	$0.0810(7)$
N	-0.0299(3)	0.3858(2)	0.1956(2)	0.0445(5)
C(1)	-0.0207(4)	0.3676 (2)	0.3049(2)	$0.0585(7)$
C(2)	0.0094(5)	0.2125(3)	0.0620(2)	$0.0657(8)$
C(3)	0.2807(4)	0.3361(3)	$0.1332(3)$	0.0817(11)
C(4)	-0.2149(3)	0.3716 (3)	0.1480(2)	0.0633(8)
C(5)	0.0153(4)	0.5111(2)	0.1723(2)	0.0656(9)
C(6)	-0.1834(6)	0.4024(4)	0.3445(3)	0.0943(13)
C(7)	$0.1382(6)$	0.4264(3)	0.3608(3)	0.0991 (14)
B	0.0971 (4)	0.2859(3)	0.1576(2)	0.0494(7)

${ }^{\text {an }}$ See Table 6.
[11] using only the observed reflections. Structural calculations on XII were made with the SHELXTL program package, refinement being made on F^{2} using all unique reflections. In both structures the positions of the methyl hydrogen atoms were idealized with allowance for departure from the staggered conformation. The final coordinates of the non-hydrogen atoms of IV and XII are listed in Tables 6 and 7 respectively [12].

6.2. Preparation of $I-X I I$

6.2.1. 5.5-Bis(trifluoromethyl)-4.4-dimethyl-3-mesiryl-1. oxa-2-aza-4-azonia-5-boratacyclopent-2-ene (I)

To a stirred solution of $1.61 \mathrm{~g}(10 \mathrm{mmol})$ of MesCNO in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise 1.93 g (10 mmol) of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to warm to room temperature as
stirring was continued for 30 min . The solvent and other volatile by-products were removed in vacuo at 0.1 mbar and $20^{\circ} \mathrm{C}$ and the residue was recrystallized from CHCl_{3}. y old $2.76 \mathrm{~g}(78 \%)$, m.p. $102^{\circ} \mathrm{C}$. $\mathbb{R}\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{C}=\mathrm{N})$ $1623 \mathrm{mb} ; \nu\left(\mathrm{CF}_{3}\right) 1119$ vs, $1100 \mathrm{vs}, 1097$ vs.
6.2.2. 5,5-Bis(trifluoromethyl)-4,4-dimethyl-3-phenyl-1-oxa-2-aza-4-azonia-5-boratacyclopent-2-ene (II), 5,5-bis(trifluoromethyl)-4,4-dimethyl-3-p-chlorophenyl-1-oxa-2-aza-4-azonia-5-boratacylopent-2-ene (III), 5,5-bis(trifluoromethyl)-4,4-dimethyl-3-t-butyl-1-oxa-2-aza-4-azonia-5-boratacyclopent-2-ene (IV), 5,5-bis(trifluor-omethyl)-4,4-dimethyl-3-i-propyl-1-oxa-2-aza-4-azonia-5-boratacyclopent-2-ene (V)

General procedure. To a stirred solution of 8 mmol of the corresponding hydroximic acid chloride R $\mathrm{ClC}=\mathrm{NOH}\left(\mathrm{R}=\mathrm{Ph},{ }^{\mathrm{P}} \mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{~F}_{5},{ }^{1} \mathrm{Bu},{ }^{i} \mathrm{Pr}\right)$ in 50 ml ether was added 8 mmol of NEt_{3} at $-30^{\circ} \mathrm{C}$ as stirring was continued for 1 h . The reaction mixture was filtered at $-30^{\circ} \mathrm{C}$; then 8 mmol of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ was added dropwise to the filtrate under stirring. The solvent and other volatile by-products were removed at 0.1 mbar and $20^{\circ} \mathrm{C}$, and the residue was recrystallized from CHCl_{3}.

II (yield 44%), m.p. $86^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right)$: $\nu(\mathrm{C}=\mathrm{N}) 1653$ $\mathrm{m} ; \boldsymbol{\nu}\left(\mathrm{CF}_{3}\right) 1127$ vs, 1102 vs.

III (yield 29%), m.p. $68^{\circ} \mathrm{C} . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{C}=\mathrm{N})$ $1653 \mathrm{~m} ; \nu\left(\mathrm{CF}_{3}\right) 1104$ vs, 1099 vs.

IV (yield 51%), m.p. $135^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): ~ \nu(\mathrm{C}=\mathrm{N})$ 1602 w; $\nu\left(\mathrm{CF}_{3}\right) 1113$ vs, 1094 vs.

V (yield 34%), m.p. $99^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{C}=\mathrm{N}) 1622$ $w_{i} \boldsymbol{\nu}\left(\mathrm{CF}_{3}\right) 1108$ vs, 1092 vs.
6.2.3. 5,5-Bis(triffuoromethyl)-2,4,4 - trimethyl-3-phenyl-1-oxa-2-aza-4-azonia-5-boratacyclopentane (VI). 5.5-bis(trifluoromethyl)-2,4,4-trimethyl-3-p-chlorophenyl- /-oxa-2-aza-4-azonia-5-boratacyclopentane (VII), 5,5. bis(riffuoromethyl)-2,4,4-trimethyl-3-pentafluorophen-yl-1-oxa-2-aza-4-azonia-5-boratacyclopentane (VIII), 5,5-bis(trifluoromethyl)-2,4,4-trimethyl-3-t-butyl-]-oxa-

Table 8
Elemental analyses

Compound	Formula	Anal. Found(Calc.) (\%)		
		C	H	N
I	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{O}$	47.1(47.49)	5.0(4.84)	$8.1(7.91)$
II	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{O}$	41.4(42.34)	$3.8(3.55)$	8.8(8.98)
III	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BClF}_{6} \mathrm{~N}_{2} \mathrm{O}$	36.7(38.13)	$3.2(2.91)$	$7.9(8.09)$ $9.7(9.59)$
IV	$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{O}$	$37.0(37.02)$	5.2(5.18)	9.7(9.59)
V	$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{O}$	34.6(34.56)	4.6(4.71)	10.1(10.08)
V1	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{O}$	43.6(43.93)	$4.7(4.61)$ $3.9389)$	$8.5(8.54)$ $7.7(7.73)$
VII	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BCIF}_{6} \mathrm{~N}_{2} \mathrm{O}$	39.4(39.76)	$3.9(3.89)$	$7.787 .73)$ $6.6(6.70)$
VIII	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BF}_{11} \mathrm{~N}_{2} \mathrm{O}$	$34.4(34.48)$ $369(38.99)$	$2.6(2.41)$ $6.1(6.22)$	6.666.70) $9.0(9.09)$
IX	$\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{O}$	36.9(38.99)	6.1(6.22)	$9.009 .09)$ $8.9(9.52)$
X	$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{BF}_{6} \mathrm{~N}_{2} \mathrm{O}$	36.9(36.76)	$6.1(5.83)$ $4.0(4.04)$	$8.9 \times 9.52)$ $4.6(4.68)$
XII	$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{BF}_{6} \mathrm{NO}_{2} \mathrm{~S}$	28.0(28.12)	4.0(4.04)	4.6(4.68)

2-aza-4-azonia-5-boratacyclopentane (IX), 5,5-bis-(trifluoromethyl)-2,4,4-trimethyl-3-i-propyl-1-oxa-2-aza-4-azonia-5-boratacyclopentane (X), 5.5-bis(tri-fluoromethyl)-4,4-dimethyl-2,3-diphenyl-1-oxa-2-aza-4-azonia-5-boratacyclopentane (XI)

General procedure. To a stirred solution of 10 mmol of the respective nitrone in 30 ml of pentane was added dropwise 10 mmol of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ at $-10^{\circ} \mathrm{C}$. The cycloadducts VI-XI precipitated and were recrystallized from dry CHCl_{3}.

VI (yield 80%), dec. $\sim 105^{\circ} \mathrm{C}$. $\mathbb{R}\left(\mathrm{cm}^{-1}\right): \nu\left(\mathrm{CF}_{3}\right)$ 1103 vs. 1088 vs.

VII (yield 76%), dec. $\sim 100^{\circ} \mathrm{C} . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): \nu\left(\mathrm{CF}_{3}\right)$ 1110 vs, 1105 vs.

VIII (yield 67%), dec. $\sim 94^{\circ} \mathrm{C}$. IR (cm^{-1}): $\boldsymbol{\nu}\left(\mathrm{CF}_{3}\right)$ 1090 sb .

IX (yield 75%), dec. $\sim 71^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): \nu\left(\mathrm{CF}_{3}\right)$ 1099 sb.

X (yield 73\%), dec. $\sim 71^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): \nu\left(\mathrm{CF}_{3}\right)$ 1099 sb.

XI (yield 73\%), dec. $\sim 81^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): \nu\left(\mathrm{CF}_{3}\right)$ 1095 sb.
6.2.4. 5.5-Bis(trifluoromethyl)-3,3,4,4-tctramethyl-1-oxa-2-thia-4-azonia-5-boratacyclopentane-2-oxide (XII)

To a stirred solution of 15 mmol of triethylamine and 10 mmol of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ in 30 ml of dry ether was added dropwise 10 mmol of ${ }^{\prime} \mathrm{PrSO}_{2} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. Stirring was continued for 30 min , and all the volatile material removed in vacuo at $20^{\circ} \mathrm{C}$. The residue was suspended in 30 ml of CHCl_{3}, and the ammonium salt removed by extraction with three 10 ml portions of water. The solvent CHCl_{3} was evaporated in vacuo and XI sublimed at 0.1 mbar and $80^{\circ} \mathrm{C}$. Yield (63%).

XII, m.p. $130^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): \nu\left(\mathrm{CF}_{3}\right) 1124$ vs, 1089 vs; $\nu(S=0) 1002 \mathrm{~s}$.

For elemental analyses see Table 8.

Acknowledgements

Financial support by the Fonds der Chemie and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References and notes

[1] G. Pawelke and H. Bürger, Appl. Organomer. Chem., 10 (1996) 147.
[2] A. Ansorge, D.J. Brauer, H. Bürger, F. Dörenbach, T. Hagen, G. Pawelke and W. Weuter, J. Organomet. Chem., 396 (1990) 253.
[3] A. Ansorge, D.J. Brauer, H. Bürger, F. Dörrenbach, T. Hagen, G. Pawelke and W. Weuter, J. Orgamomer. Chem., 407 (1991) 283.
[4] P. Paetzold and G. Schimmel, Z. Naturforsch., 35b (1980) 568.
[5] R. Huisgen and W. Mack, Tetrahedron Lett., (1961) 583.
[6] G. Opitz and K. Rieth, Tetrahedron Lett., (1965) 3977. H. Ulrich, Organic Chemistry - Cycleaddition and Reactions of Heterocumulenes, Vol. 9, Academic Press, 1967.
[7] F.H. Allen, O. Kennard, D.G. Watson. L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. II, (1987) SI.
[8] S.J. Rettig and J. Trotter, Can. J. Chem., 6 (1983) 2334.
[9] P. Paetzold and G. Stohr, Chem. Ber., IOI (1968) 2874.
[10] G.M. Sheldrick, shexs-86. Program for crystal sfructure solutions, University of Göttingen, 1986.
[II] G.M. Sheldrick, striax-76, Program far crystal structure determination, University of Cambridge, 1976.
[12] Additional crystallographic details may be obtained from Fachinformationszentrum Karlsruhe, D-76344 EggensteinLeopoldshafen, by quating the depository numbers CSD 405242 for IV and CSD-405243 for XII, the names of the authors and the journal citation.

[^0]: - Corresponding author.
 ${ }^{1}$ Dedicated to Professor Kurt Dehnicke on the occasion of his 65th birthday.

